MECHANISM OF CHROMATOGRAPHIC SEPARATION OF OPTICALLY ACTIVE METAL COMPLEXES

HAYAMI YONEDA
Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730 (Japan)

CONTENTS

1. Introduction 59
2. Historical background 60
3. Optical resolution of cationic complexes 63
3.1. Optical resolution by d-tartrate 63
3.1.1. Resolution of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ 63
3.1.2. Crystal structures of diastereomeric salts containing $\left[\mathrm{M}(e n)_{3}\right]^{3+}$ and d-tartrate ions 63
3.1.3. Chromatographic evidence of a face-to-face ion association 65
3.1.4. Nature of chiral discrimination by the d-tartrate ion 66
3.1.5. Application of the three-fold axis association model 68
3.1.6. Resolution of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ 70
3.2. Optical resolution by the antimony d-tartrate ion 71
3.2.1. Resolution of $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ complexes 71
3.2.2. Resolution of $\operatorname{cis}(\mathrm{O})-\left[\mathrm{Co}(\mathrm{O})_{2}(\mathrm{~N})_{4}\right]^{+}$complexes 73
3.2.3. Resolution of $c i s-\left[\mathrm{Co}(\mathbf{X})_{2}(\mathrm{en})_{2}\right]^{+}$and $c i s-\alpha-\left[\mathrm{Co}(\mathbf{X})_{2}(\text { trien })\right]^{+}$ 75
3.2.4. Resolution of $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ by reversed-phase ion-pair chromatography 76
3.3. Spectroscopic evidence for directional ion association 77
4. Resolution of neutral complexes 80
4.1. Resolution of $f a c-\left[\mathrm{Co}(\alpha-\mathrm{AA})_{3-n}(\beta \text {-ala })_{n}\right]$ 80
4.2. Resolution of mer- $\left[\mathrm{Co}(\mathrm{AA})_{3}\right]$ complexes 82
4.3. Resolution of $\left[\mathrm{M}(\mathrm{acac})_{3}\right]$ 82
5. Resolution of anionic complexes 83
5.1. Resolution by alkaloid cations 83
5.1.1. Resolution of $\left[\mathrm{Co}(\mathrm{O})_{4}(\mathrm{~N})_{2}\right]^{-}$type hydrophilic complexes 83
5.1.2. Resolution of $\left[\mathrm{Co}(\mathrm{O})_{4}(\mathrm{~N})_{2}\right]^{-}$type hydrophobic complexes 85
5.2. Chiral discrimination by complex ions 86
References 90

1. INTRODUCTION

Chromatographic techniques have been widely used for the separation of various metal complexes, and have been recognized by coordination chemists as indispensable for the separation and purification of various kinds of isomers (geometric, diastereomeric, enantiomeric, etc.) of a wide variety of coordination compounds. A vast number of studies have been carried out in this area. Most of them, however, had as their aim the isolation of pure isomers, with a discussion of the correlation between properties and structures, so that their efforts were mainly concentrated on the search for appropriate separation conditions. From the chromatographic viewpoint the data are diverse and non-systematic.

We therefore attempted to elucidate the mechanism of the chromatographic
separation of complexes, with emphasis on the elucidation of the mechanism of chiral discrimination from a stereochemical viewpoint Our approach to this problem was to measure the retention volumes ior enantiomeric pairs of a senes of complexes having related structures with a chiral selector as the eluent, to obtain their difference and ratio for each enantiomeric pair and to deduce the structure of the favourable ion pair formed between either one of the enantiomers and chiral selector ions To achieve this aim, we did not confine ourselves to the chromatographic study for its own sake We determıned the crystai structures of diastereomeric salts and examıned the NMR and circular dichroism (CD) spectra of chiral complex ions in solutions containing chiral selector ions and deduced the structure of the ion pair in solution

The results revealed that the d-tartrate ion approaches a $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$-type complex along its C_{3} axis and discrimınates the two enantiomers through the intimate ion-parr formation with the A enantiomer

Concerning the mechanısm of optical resolution by another chiral selector, the antimony d-tartrate ion, the importance of the shape of the opening between the chelate rings was noticed and the $L-J$ model was intuitively proposed A series of chromatographic studies was performed to verify this model These studies have been published mainly in Journal of Chromatography, and a review has been published in Journal of Liquid Chromatography on stereochemical aspects of optical resolution of octahedral metal chelates ${ }^{1}$ Since then, progress has been made concerning the chromatographic separation of opticalily active complexes High-performance liquid chromatography (HPLC) and reversed-phase ion-pair chromatography began to be applied to the separation of metal complexes and the complete resolution of anionic complexes was achieved in severali instances As an extension of the study of the Pfeiffer effect, the mode of interaction between the chiral complex cation and anion has been studied, which might lead to the exploitation of a new chiral selector The effect of chiral selector ions, such as d-tartrate and antimony d-tartrate ions, on the CD spectra of the $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{\overline{3}+}$-type complexes was studied and the mode of chiral interaction has been more clearly visualized

This review outhnes work carried out mainly in the author's laboratory to elucidate the mechanism of the chromatographic separation of optically active complexes Emphasis is piaced not on the individual experimental details but on an explanation of how the individual facts are combined to lead to visualization of the mode of chiral discrimınation

2 HISTORICAL BACKGROUND

Since Tsuchida et al ${ }^{2}$ reported in 1935 the asymmetric adsorption of metal complexes by quartz powder, many attempts have been made to achieve optical resolution by chromatography using as adsorbents optically active substances, such as quartz ${ }^{3,4}$, starch $^{5-8}$, cellulose ${ }^{9,10}$, lactose ${ }^{11,12}$, alumina treated with lactose ${ }^{13}$ and with d-tartaric acid ${ }^{14}$ and ion-exchange resins saturated with optically active complex $10 n s^{15}$ These adsorbents, however, had such weak adsorbing powers that the optical resolution achieved was far from complete There are two ways of improving the efficiency of optical resolution, as follows When the adsorbent has only a weak affinity towards the samples to be separated, an eluent having a simılarly weak affinity towards the samples should improve the efficiency of separation A remarkable
example of the chromatographic separation of optically actıve complexes was presented by Dwyer et at ${ }^{16} \mathrm{in} 1963$ They chromatographed the mixed-ligand cobalt(III) complexes of ethylenedıamıne and $(-)$-propylenediamine through a column packed with cellulose powder using water-saturated n-butanol hydrochlonic acid as the eluent and separated a series of diastereomeric salts of the type $\left[\mathrm{Co}(\mathrm{en})_{3-n}(l-\mathrm{pn})_{n}\right] \mathrm{Cl}_{3}(n=3,2,1$ and 0$)$ This technıque was soon applied to the separation of isomers of $\left[\mathrm{Co}(d, l-\mathrm{pn})_{3}\right] \mathrm{Cl}_{3}$ and a series of diastereomeric pairs were obtained ${ }^{17}$ In these two instances, the chirality of the cellulose skeleton does not seem to make any contribution, as no enantiomeric separation was achieved The separation was attained here by partition chromatography

Another way of improving the efficiency of optical resolution is to use a packing material having a sufficient adsorbing power As most coordination compounds are ionic, an ion-exchange resin will meet this requirement

It was in 1952 when King and Walters ${ }^{18}$ reported the separation of the cısand trans-[$\left.\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$using a column packed with a strongly acidic cat-ion-exchange resin (Amberlite $\overline{\mathrm{I} R}-120$) using 1 and 3 M NaCl solutions as the eluent From then until the mid 1970s, coordination chemists concentrated their efforts on the chromatographic separation of geometrical isomers of vanous complexes of relatively simple chelating ligands in these separations, the trans isomer having no dipole moment is always eluted faster than the cis isomer having a dipole moment The situation is not changed even when there are more than two isomers to be separated The retention volume increases with increase in the polarity of the isomer, irrespective of whether they are cations or anions ${ }^{19}$ (Fig 1)

It is therefore clear that the separation of isomers depends on the difference in adsorption strengths on the ion-exchange resin, that is, the separation is governed by adsorption A common ion-exchange resin is the three-dimensional network of

$\left.[\operatorname{Co(gly})_{2}(e n)\right]^{+}$

$\left[\mathrm{Co}(\mathrm{gly})_{2}(o x)\right]^{-}$
trans

C_{1}

C_{2}
Fig 1 Polarity order of geometrical isomers of $\left[\mathrm{Co}(\mathrm{gly})_{2}(\mathrm{en})\right]^{+}$and $\left[\mathrm{Co}(\mathrm{gly})_{2}(\mathrm{ox})\right]^{-}$
styrene divinylbenzene copolymer with ionized functional groups The environment of the functional group is hydrophobic and the electrostatic interaction between ions should be much stronger here than in an aqueous solution as the eluent This explains why the separation is governed by adsorption It must be noted that almost all examples of such successful separations of geometrical isomers reported so far are separations of univalent cations or anions This type of resin is not suitable for the separation of highly charged ions Coordination chemists whose aim is optical resolution by chromatography for its own sake take $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ as the first target because it has a simple structure of high symmetry and is the prototype of chiral complex ions However, this complex is adsorbed so strongly on ion-exchange resins that elution itself is very difficult

To elute highly charged complex ions, it is desirable to use an ion-exchange resin whose functional group is surrounded not by a hydrophobic environment but by a somewhat hydrophilic environment Cellulose ion exchangers may satisfy this condition In fact, the first report of the complete resolution of complex ions was made in 1962 by Brubaker et al ${ }^{20}$, who eluted tripositive trinuclear complex ions of the type $\left[\mathrm{Co}_{3}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)_{6}\right]^{3+}$ on a column packed with cellulose ion exchanger using 01 M NaCl solution as the eluent and separated one type of enantiomer in a pure state In this instance, however, optical resolution is presumed to have been achieved by the chirality of the cellulose skeleton This success was attributed to the high charge and large size of the complex cation Following this, they showed that partial resolution could easily be achieved for several kinds of racemic complexes, such as $[\mathrm{Co}(\text { edta })]^{-},[\mathrm{Co}(\mathrm{trdta})]^{-}, c l s-\left[\mathrm{Co}(1 \mathrm{da})_{2}\right]^{-}$and $[\mathrm{Co}(\mathrm{en}) \mathrm{A}]^{-}$, where trdta and ida represent trimethylenediamınetetraacetate and imınodiacetate, respectively, and A is $\mathrm{N}, \mathrm{N}^{\prime}$-dımethyl- or $\mathrm{N}, \mathrm{N}^{\prime}$-dıethylethylenediamıne- $\mathrm{N}, \mathrm{N}^{\prime}$-dıacetate, and $[\mathrm{Co}(\mathrm{edta}) \mathrm{B}]^{+}$, where \mathbf{B} is \mathbf{N}-methyl-, N -ethyl-, $\mathbf{N}, \mathbf{N}^{*}$-dımethyl- or $\mathbf{N}, \mathbf{N}^{\prime}$-dıethylethylenedıamıne ${ }^{21}$ These resolutions are partiai The exchange capacity of cellulose ion exchanger was not so high as to allow an efficient resolution For efficient and easy operation of chromatographic separations, a new type of ion-exchange resin was desired that contains the ionizable functional groups more densely in a hydrophilic environment Sephadex ion exchanger meets such requirements

After several attempts at optical resolution with insufficient efficiency using cellulose and con-exchange ceiliuiose ${ }^{22}$, Yoshikawa and Yamasakı ${ }^{23}$ achieved the complete resolution of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ on a column of Sephadex ion exchanger using an

Fig 2 Elution curve of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ eluted by $015 M$ sodium d-tartrate on an SE-Sephadex column
aqueous solution of sodium d-tartrate as the eluent (Fig 2) They also succeeded in separating three geometrical isomers of $\left[\mathrm{Co}(\mathrm{dicn})_{2}\right]^{3+}$ and showed that Sephadex ion exchanger is a suitable packing material for the chromatographic separation of varrous kinds of highly charged isomers With this report as a starting point, chromatograpahic separations of a wide variety of isomers (geometric, diastereomeric and enantiomeric or conformationai) have been performed, and now chromatographic separation and purfication have become a necessary technique in preparative coordination chemistry ${ }^{24}$

3 OPTICAL RESOLUTION OF CATIONIC COMPLEXES

31 Optccal resolution by d-tartrate

311 Resolution of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

Since $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is a prototype of chiral metal complexes, attempts to achieve the complete resolution of this complex were made before any other racemic complexes In the same year as Yoshikawa and Yamasakı achieved the complete resolution of this complex, Yoneda and co-workers also achieved the complete resolution of this complex by paper eiectrophoresis ${ }^{25}$ and later by thin-layer chromatography ${ }^{26}$ using an aqueous Na_{2} (d-tart) solution mixed with AlCl_{3} as a supporting electrolyte or developer The idea of adding AlCl_{3} to the $\mathrm{Na}_{2}(d$-tart) solution came from the expectation that the Al^{3+} on would deprive the hydrated $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ of water molecules so that the d-tartrate ion could come close to the complex to recognize the chirality more clearly This expectation soon proved to be wrong, however If this expectation were reailzed, the Λ cation should migrate through the supporting electrolyte solution more slowiy than the Δ cation, because the Λ cation associates with the d-tartrate ion more strongly than the Δ cation and should be decelerated by the d-tartrate ion to a greater extent than the Δ cation However, this is not the case ${ }^{27}$ In actual electrophoresis, the Λ cation showed a longer migration than the Δ cation (see Fig 3) It was therefore concluded that the separation of the Λ and Δ isomers was acheved by the anionc Al- d-tartrate complex Optical resolution by the Na_{2} (d-tart) and AlCl_{3} solution was a special case that cannot be appled to any complexes other than $\left[\mathrm{M}(\mathrm{en})_{3}\right]^{3+}$

312 Crystal structures of diastereomeric salts contaning $\left[M(e n)_{3}\right]^{3+}$ and d-tartrate ions

Our strategy for the elucidation of the mechansm of optical resolution of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ by the d-tartrate ion is first to obtain information on how $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ and d-tart ${ }^{2-}$ ions are packed in the diastereomeric salt, $A-\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Br} d$-tart $5 \mathrm{H}_{2} \mathrm{O}$ It is well known that the A - $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ ions form crystals with halide and d-tartrate ions, but the $4-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ ions do not Some clue with respect to the elucidation of chiral discrimination should be found in the packing mode of the Λ cation and d tartrate anion Crystal structure analysis ${ }^{28}$ revealed that a unique face-to-face close contact mode of the two ions exists in this crystal Fig 4 shows this face-to-face 1on-pair structure viewed along the C_{3} axis of the complex cation Here, four carbon atoms of the d-tartrate ion make a plane that is perpendicular to the C_{3} axis of the complex, and four oxygen atoms of the d-tartrate ion are projecting towards the

Fig 3 Electrophoresis pattern of the racemic $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ complex in sodium d-tartrate with and without aluminum chlonide
complex and facing the triangular facet composed of three NH_{2} groups Interestingly, this face-to-face intimate ion-pair structure was also found in other two diastereomeric salts composed of $\Lambda-\left[\mathrm{M}(\mathrm{en})_{3}\right]^{3+}$ and d-tart ${ }^{2-}$ 1ons, $\mathrm{Li} \quad \Lambda-\left[\mathrm{Cr}(\mathrm{en})_{3}\right](d \text {-tart })_{2}$ $3 \mathrm{H}_{2} \mathrm{O}^{29}$ and $\mathrm{H} \quad \Lambda$ - $\left[\mathrm{Co}(\mathrm{en})_{3}\right](d \text {-tart })_{2} \quad 3 \mathrm{H}_{2} \mathrm{O}^{30}$

It is remarkable to find this unique face-to-face ion-pair structure in these three diastereomeric crystals, which are different in composition, cell dimensions and space group symmetry Therefore, it is reasonable to assume that the origin of discrimination by d-tart ${ }^{2-}$ lies in this face-to-face ion-pair structure This ion pair is presumed to be fairly stable and to exist even in solution The combination of the Δ cation and d-tart anion does not seem to proauce such a stable ion pair In this way, the chromatographic elution order (the Λ ion is eluted faster than the Δ ion) can be explained

Fig 4 Face-to-face ion-pair structure of $\lambda-\left(+j_{D}-\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Br} \quad d\right.$-tart $\quad 5 \mathrm{H}_{2} \mathrm{O}$
by the different degrees of ion association The association constants, K_{A} and K_{A}, for the two cquilibria

$$
\begin{aligned}
& A \text {-cation }+d \text {-tart anıon } \stackrel{K_{s}}{\rightleftarrows} A-d \\
& A \text {-cation }+d \text {-tart anıon } \stackrel{K}{\rightleftarrows} \Delta-d
\end{aligned}
$$

have been obtained by several workers ${ }^{31-34}$ and all of the results indicate that K_{A} $>K_{\Delta}$

A similar kind of face-to-face close contact mode was found recently in the crystal structure oī a more soluble dastereomernc salt, A - $[\mathrm{Co}(\operatorname{sen})] \mathrm{Cl} d$-tart $6 \mathrm{H}_{2} \mathrm{O}$, where sen represents $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}{ }^{35}$ The racemic $[\mathrm{Co}(\mathrm{sen})]^{3+}$ was found to be completely resolved on an SP-Sephadex C-25 column with sodium d tartrate solution as the eluent In this instance also, the Λ cation is eluted first Hence it appears likely that the unique face-to-face close contact mode found in crystals may also exist in solution and piay a decisive role in the chiral discrimination of trigonal $\left[\mathrm{Co}(\mathbf{N})_{6}\right]^{3+}$ complexes

313 Chromatographic evidence for a face-to-face ion associatıon

It was Searle ${ }^{36}$ who first demonstrated the significance of ion association in chromatographic separations on an SP-Sephadex column He chromatographed a set of closely related $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$-type complexes, $\left[\mathrm{Co}(\mathrm{dien})_{2}\right]^{3+},[\mathrm{Co}($ dien $)($ medien) $]^{3+}$ and $\left[\mathrm{Co}(\text { medien })_{2}\right]^{3+}$, where dien and medien represent diethylenetriamine and N -methyldiethylenetriamıne, respectıvely, on an SP-Sephadex C-25 column with different eluents, such as $\mathrm{NaClO}_{4}, \mathrm{NaNO}_{3}, \mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2}(d$-tart) and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ From a consideration of the elution order, he drew several conclusions, as follows

The separations obtained with highly charged eluent anions appear to be due primarily to differences in the degrees of ion association between the complex ions and the eluent anions rather than to differences in the strengths of adsorption of the free complex cations on the resin The strength of ion association depends on (1) the basicity of the eluent anıon in the order $\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>d$-tart ${ }^{2-}>\mathrm{Cl}^{-}>\mathrm{NO}_{3}^{-}$, and (2) the avarlability of appropriately disposed $\mathrm{N}-\mathrm{H}$ bonds for hydrogen bonding to the oxyanion and the acidity of the $\mathrm{N}-\mathrm{H}$ hydrogens (secondary $\mathrm{NH}>$ primary NH_{2})

Especially important is the appropriate disposition of the $\mathrm{N}-\mathrm{H}$ bonds The oxyanion, such as $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}$ and d-tart ${ }^{2-}$, has a strong tendency to form an especially stable ion pair with the complex having three axial $\mathrm{N}-\mathrm{H}$ bonds along the C_{3} or pseudo- C_{3} axis of the complex (see Fig 5) This is just what we call a face-to-face ion association A typical example of a separation to support this association mode is found in the elution order of the three symmetric facial isomers of [Co$\left.(\text { dien })_{2}\right]^{3+},[\mathrm{Co}(\text { dien })(\text { medien })]^{3+}$ and $\left[\mathrm{Co}(\text { medien })_{2}\right]^{3+}$ with the strongly associating eluent anion PO_{4}^{3-} The elution order is $\left[\mathrm{Co}(\mathrm{dien})_{2}\right]^{3+}>[\mathrm{Co}(\mathrm{d} e \mathrm{en})(\text { medien })]^{3+}>$ $\left[\mathrm{Co}(\text { medien })_{2}\right]^{3+}$, which corresponds exactly to the decreasing numbers $(2,1,0)$ of sites available for triple hydrogen bonding

Although s-fac-[Co(medien) $)^{2+}$ has no sites for triple hydrogen bonding, it does have sites for double hydrogen bonding In contrast, u-fac-[Co(amam) ${ }^{3+}$ (see

Fig 5 Structures of $\left[\mathrm{Co}(\text { dien })_{2}\right]^{3+},[\mathrm{Co}(\text { dien })(\text { medien })]^{3+},\left[\mathrm{Co}(\text { medien })_{2}\right]^{3+}$ and $[\mathrm{Co}(\mathrm{amam})]^{3+}$

Fig 5) has only three separately disposed $\mathrm{N}-\mathrm{H}$ bonds avanlable only for single hydrogen bonding, so that this compiex is eluted much slower than s-fac-[Co(medien $\left.)_{2}\right]^{3+}$ Hence we have the elution order s-fac- $\left[\mathrm{Co}(\text { dien })_{2}\right]^{3+}>s$-fac- $[\mathrm{Co}($ medien $\left.)_{2}\right]^{3+}>u-f a c-[\operatorname{Co}(\operatorname{amam})]^{3+}$ This elution order is reversed with the singly charged eluent anions $\mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}$and ClO_{4}^{-}, and the degree of separation increases with these anions in the order $\mathrm{Cl}^{-}<\mathrm{NO}_{3}^{-}<\mathrm{ClO}_{4}^{-}$

The reversal of the elution order can be rationalized in terms of two opposing factors, cation-eluent anion interaction (ion association) and cation-resin interaction (adsorption) The former interaction decreases along the anıon senies from PO_{4}^{3-}, via SO_{4}^{2-} and d-tart ${ }^{2-}$ to $\mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}$and $\mathrm{ClO}_{4}^{-} \mathrm{W}_{1}$ th ClO_{4}^{-}, the factor that governs the separation should be electrostatic interaction between the cation and the negative sites of the resin The magnitudes of this interaction for various complex cations should be in the same order as those of the interaction with the eluent anions, $v z z$, greatest for s-fac- $\left[\mathrm{Co}(\mathrm{dien})_{2}\right]^{3+}$, so that this complex is the most retained by the resin and the least retained is u-fac-[Co(amam) $]^{3+}$, which is eluted first It was also pointed out that the acidity difference of $\mathrm{N}-\mathrm{H}$ hydrogens affects the ion association so that it determines the elution order Whereas s - $f a c-\left[\mathrm{Co}(\text { dien })_{2}\right]^{3+}$ associates with PO_{4}^{3-} through two prımary amıne hydrogens and one secondary amine hydrogen, u-fac$\left[\mathrm{Co}(\text { dien })_{2}\right]^{3+}$ associates with PO_{4}^{3-} through three prımary amıne hydrogens Hence the s-fac isomer associates more strongly than the u-fac isomer with PO_{4}^{3-}, so that the former is eluted with PO_{4}^{3-} faster than the latter

314 Nature of chiral discrimination by the d-tartrate ion

Since the unique ion-pair is found in solution as well as in crystal, it should be fairly stable However, for a complete understanding of the mechanism of chiral discrimination by the d-tartrate ion, the structure of the $\Delta-d$ ion pair is also needed, which cannot be obtained from crystal structure analysis To avoid this difficulty, the
hypothetical structure of the $\Delta-d$ ion pair was imagined based on the real structure of the $\Lambda-d$ ion pair

The characteristic feature of the $A-d$ ion pair structure can be visualized by looking only at the interacting parts of the ions that are in direct contact with each other As the part of the complex that is directly involved in association is its upper half (see Fig 6), we need to consider only its upper half, that 1s, the shoulders of the three chelate rings On the other hand, as the d-tart ion associates with the complex ion with its four oxygen atoms, it is sufficient to consider the configuration of these four oxygen atoms By superimposing these two parts, we obtain the pattern of a stable A-dion pair, as shown in Fig 6a Here, the four large circles drawn by broken lines each represent the effective atomic radius of the oxygen atom These four oxygen crrcles are placed in the space formed by three chelate rings A good fit can be experienced between the two ions However, if we replace the A with the Δ ion, as shown in Fig 6b, such a good fit is not obtained Three oxygen circles are placed in the space between the chelate rings, but the fourth oxygen circle comes on to the shoulder of the chelate ring so that the $\Delta-d$ combination does not form the intimate ion pair structure like the $\Lambda-d$ combination Therefore, instead of the three-point attachment model proposed for organic compounds, a four-point attachment model

Fig 6 Schematic representation of the mode of association between d-tart and $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ (a) The compact fit between d-tart and Λ-complex, (b) the non-compact fit between d-tart and Δ-complex
was proposed in which the a-tart ion discriminates the complex cation with its four oxygen atoms, that 1 s , with three oxygen atoms hydrogen-bonded to the three NH groups and with the fourth oxygen not involved in hydrogen bonding with the NH group

315 Applicatuon of the three-fold axis assoctation model

The above discussion suggests that the complex having three NH bonds in a triangular facet of the octahedral configuration should be optically resolved with the d-tart ion as the eluent in fact, total resolution by d-tart was reported for $\left[C o(e n)_{2}(A A)\right]^{2+}$, where AA represents glycıne ${ }^{37}, \beta$-alanıne ${ }^{37}$, ethanolamıne ${ }^{38}$ or thioethanolamıne ${ }^{38}$ Even the electrically neutral complex fac- $\left[\operatorname{Co}(\beta \text {-ala })_{3}\right]^{39}$ should be resolved with d-tart as the eluent Although this complex is electrically neutral, its three NH_{2} groups are disposed in a triangular facet and three COO^{-}groups are situated in another triangular facet, so that the complex should have a dipole moment It should be retained farly firmly by the negative sites of the ion-exchange resin, and associated with d-tart farriy strongly In fact, the complex was completely resolved on the Na^{+}form of CM -Sephadex ion exchanger with an ethanol-water solution of Na_{2} (d-tart) as the eluent (see Fig 7) As a solution of sodium chloride or sodium sulphate did not give two elution bands, the separation of two elution bands is considered to be effected by d-tart and not by the chiral skeleton of the Sephadex

The separation of four isomers of $\left[\mathrm{Co}(\mathrm{D} / \mathrm{L}-\mathrm{phe})(\mathrm{en})_{2}\right]$, where phe represents phenylalanıne, Λ-(L-phe), Δ-(L-phe), Λ-(D-phe) or Δ-(D-phe) with d-tart is worth noting ${ }^{40}$ Fig 8 shows the structures of these four isomers in their most populated conformers Here A and B are enantiomers and C and D are also enantiomers, but (A, B) and (C,D) are diastereomers The phenyl group in C and D is directed along the pseudo- C_{3} axis and prevents the approach of d-tart to the complex In contrast, the phenyl group in A and B is directed away from the pseudo- C_{3} axis and does not reject the approach of d-tart along the pseudo- C_{3} axis The difference in the disposition of the phenyl group between (A, B) and (C,D) should be reflected in the difference in association constants with d-tart In fact, the association constants with

Fig 7 Two enantiomers and elution curve of $f a c-\left[\mathrm{Co}(\beta-\mathrm{ala})_{3}\right]$

$A-\left(\operatorname{Co}(L \text {-phe })(e n)_{2}\right)^{i z}$

$$
\Delta-\left(\operatorname{Co}(D-\text { phe })(e n)_{2}\right]^{2+}
$$

(C)

$$
\Lambda-\left[\operatorname{Co}(0 \text { phe })(\text { en })_{2}\right]^{2 *} \Delta-[\operatorname{co(L-phe)(en)}]^{2+}
$$

Fig 8 Molecular models for the phenylaianınato complexes
d-tart are smaller in C and D than in A and B The association constants in A and B are nearly equal to those in $\left[C o(g l y)(e n)_{2}\right]^{2+}$, for which steric repulsion against the oncoming d-tart is not expected (see Table 1) In addition, the d-tart ion coming along the pseudo $-C_{3}$ axis should discriminate the Λ from the Δ ions The situation is clearly reflected in the elution curve obtained using an SP-Sephadex column with

Fig 9 Elution curve of $\left[\mathrm{Co}(\mathrm{D}, \mathrm{L}-\mathrm{phe})(\mathrm{en})_{2}\right]^{2+}$ with d-tartrate

TABLE 1
ASSOCIATION CONSTANTS FOR $A-$ AND $\Delta-\left[\operatorname{Co}(\mathrm{am})(\mathrm{en})_{2}\right]^{2+}$ AT $25^{\circ} \mathrm{C}$ AND $\mu=01$

Complex	L-tart ${ }^{2-}$	D- Eart^{2-}
A- $\left[\mathrm{Co}(\mathrm{gly})(\mathrm{en})_{2}\right]^{2+}$	43 ± 02	
$\Delta-\left[\mathrm{Co}(\mathrm{gly})(\mathrm{en})_{2}\right]^{2-}$	39 ± 03	
1-[Co(L-phe)(en) $\left.{ }_{2}\right]^{2+}$	43 ± 01	40 ± 01
$\Delta-\left[\mathrm{Co}(\mathrm{D}-\mathrm{phe})(\mathrm{en})_{2}\right]^{2+}$	(40 ± 01)	
A-[Co(D-phe)(en) $\left.)^{2}\right]^{+}$	(27 $\mathrm{L}^{(123 \text {) }}$	
$\Delta-\left[\mathrm{Co}(\mathrm{L}-\mathrm{phe})(\mathrm{en})_{2}\right]^{2+}$	12 ± 06	27 ± 03
A- $\left.[\mathrm{Coren})_{3}\right]^{3+}$	$136+02$	
$\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$	117 ± 04	

d-tart as the eluent, as shown in Fig 9 It is worth noting that the separation of diastereomers is greater than the separation of enantiomers

316 Resolution of $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$

Fujita et ai ${ }^{41,42}$ prepared a new modification of Sephadex resin with $D(-)$ tartrate groups of an ester type D-TA(ES)-Sephadex They employed this cation exchanger in the optical resolution of $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$ and also $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ with aqueous $\mathrm{L}(+)$-tartrate as the eluent, with the expectation that chiral tartrate groups in both stationary (D) and mobile (D) phases would contribute additively to chiral discrimınation of the complex This technique actually enabled them to isolate optically pure $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$, complete resoiution of which has not yet been accomplished by conventional chromatographic techniques However, the d-TA(ES)-Sephadex resin is not suitable for HPLC because its volume varies with variations in the applied pressure

Subsequently, Fujita et al^{43} synthesized another cation exchanger suitable for HPLC by allowing Toyopearl HW-40 (a polyvinyl gel having hydroxy groups like Sephadex) to react with D-tartanic acid The D-tartrate group is introduced as its ester with the OH group in the gel as in a D-TA(ES)-Sephadex, and the resulting gel, called D-TA(ES)-Toyopearl, was successfully used for the optical resolution of several Co(III) complexes Fig 10 shows the elution curve for $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$ obtained by elution with aqueous L-tartrate on a column ($40 \times 16 \mathrm{~cm} \mathrm{ID}$) packed with D-TA(ES)Toyopearl A recycling chromatographic technique is employed here Efficient reso-

Fig 10 Elution curve of $\left[\mathrm{CO}(\mathrm{tn})_{3}\right]^{-3-}$ on a D-TA(ES)-Toyopearl column
lution of the complex is achieved by the use of the doubly stereoselective effect of D-TA(ES)-Toyopearl and an L-tartrate eluent on the complex The Λ enantiomer is eluted faster, as expected They also accomplished the complete resolution of a neutral complex, fac-[$\left.\mathrm{Co}(\beta \text {-ala })_{3}\right]$, on this column by eluting with water

32 Optical resolution by the antumony d-tartrate ion

321 Resolution of $\left[\mathrm{Co}(N)_{6}\right]^{3+}$ complexes

Antımony d-tartrate [more precisely bis($\mu-d$-tartrato)diantımonate(III) ion and abbreviated hereafter to $\mathrm{Sb}(d$-tart $)$] is a divalent anion having a dimeric structure as shown in Fig 114445 This ion is a versatile resolving agent for many metal complex cations with widely different structures and properties It can also be used as a chiral selector in the chromatographic separation of many metal complex cations The assoctation constants of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ are greater with $\mathrm{Sb}(d \text {-tart })^{2-}$ than with d-tart ${ }^{2-}$, and the ratio of the association constants of Λ - and $\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ with these chiral selector ions, K_{A} / K_{4}, is also considerably greater for $\mathrm{Sb}(d \text {-tart })^{2-}$ than d-tart ${ }^{2-46}$ The separation factor of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ on an SP-Sephadex cation-exchange column ($90 \times 12 \mathrm{~cm}$ I D) with $01 M \mathrm{~K}_{2} \mathrm{Sb}(d$-tart $)$ is 142 and is greater than that with 0 l $M \mathrm{Na}_{2}(d$-tart $)(121)^{38}$ These data indicate that $\mathrm{Sb}(d$-tart $)$ is a more efficient chiral selector than d-tart for $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ It is well known that $\mathrm{Sb}(d$-tart) can resolve more types of complexes than d-tart can These facts suggest that the mode of chiral discrimination by $\mathrm{Sb}(d$-tart $)$ should be quite different from that by d-tart

As already discussed, the mode of chiral discrımınation by d-tart has been established, based on the crystal structures of the diastereomeric salts However, it should be considered fortunate that a unique face-to-face ion parr was found in common in all diastereomeric crystals Such chance cannot be expected in crystals of diastereomeric salts containing $\boldsymbol{S} b(\vec{a}$-tart) ions Therefore, a different approach should be adopted The results of chromatographic separations of Co(III) amıne complexes that had been reported to be optically resolved with $\mathrm{Sb}(d$-tart $)$ revealed that the first eluted isomers all have the Λ configuration (with a few expections) These first eluted isomers are presumed to have a special topography in common

$\bigcirc \mathrm{O} \bigcirc \mathrm{C}$
Fig 11 Dimeric structure of antimony a-tartrate

Fig 12 Schematic representation of the $A-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$-L-shaped counter-ion pair (left) and the $\Delta-$ $\left[C o(e n)_{3}\right]^{3+}-\mathrm{J}$-shaped counter-ion pair (right) The $\mathrm{L}(\mathrm{J})$-shaped counter ion fits well the $\mathrm{L}(\mathrm{J})$-shaped channels of $A(4)-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
that is not found in the Δ isomers Fig 12 shows schematic representations of the Λ and Δ configurations The A and Δ configurations are characterized not only by the mode of coordination of the three chelate rings but also by the shape of the opening between the chelate rings The opening formed by the chelate rings of the A configuration is L-shaped, and that formed by the chelate rings of the Δ configuration is J -shaped For the mechanism of discrimination of $\Lambda-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ by $\mathrm{Sb}(d$ tart), the key-and-lock model was proposed ${ }^{47}$, in which Sb (d-tart) associates with the complex by setting its skeleton in the L-shaped channel The skeleton which makes a good fit to the L-shaped channel cannot make a good fit to the J-shaped channel As $\mathrm{Sb}(d$-tart $)$ has such a skeleton which makes a good fit to the L -shaped channel, 1t can associate with the $A-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ cation firmly and with the $\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ loosely

This L-J model is a result of intuition and should be verified by experimental data To obtain the experimental support for this model, chromatographic separatıons were attempted for a series of Co (III) amıne complexes that satısfy certan conditions, and the retention volumes of both enantiomers and their ratios were measured The conditions that should be satisfied are as follows (1) they should have the same charge ($3+$), which is not localized at some special sites, (2) they should

$\alpha-[\text { Co(trien) }(e n)]^{3-}$

$\beta-[\operatorname{col}(\text { trien })(e n)]^{3+}$

$\operatorname{s-fac}-\left[\operatorname{Co}(\text { dien })_{2}\right]^{3+}$

u-fac- $[\operatorname{Co}(d i e n)]_{2}^{3+}$

$\operatorname{mer}-\left[\mathrm{Co}(\text { dien })_{2}\right]^{3+}$

Fig 13 The five complexes examined, including geometric somers

TABLE 2
ADJUSTED RETENTION VOLUMES AND SEPARATION FACTORS
\mathbf{L} and J are the number of \mathbf{L} - and $\overline{\mathrm{J}}$-shaped channels in the first eluted enantiomer $\operatorname{Vol}(\mathrm{I})=$ retention volume of the first band eluted with $\mathrm{K}_{2}\left[\mathrm{Sb}_{2}(d \text {-tart })_{2}\right], \mathrm{Vol}(\mathrm{II})=$ retention volume of the second band eluted with $\mathrm{K}_{2}\left[\mathrm{Sb}_{2}(d \text {-tart })_{2}\right] \quad \mathrm{Vol}(I I I)=$ retention volume of the band eluted with KCl Diff $=\operatorname{Vol}(\mathrm{II})$
$-(\operatorname{Vol}(\mathrm{I}) \alpha=$ Separation factor
$\left.\begin{array}{llllllll}\hline & \text { Complex } & L & J & \begin{array}{l}\text { Vol(I) } \\ (m l)\end{array} & \begin{array}{l}\text { Vol(II) } \\ (m l)\end{array} & \begin{array}{l}\text { Vol(III) } \\ (m l)\end{array} & \text { Diff }\end{array}\right\}$

* Estımated, because of a partial resolution
have the same number of the ethylene bridges, and (3) they should differ in the number of L-shaped channels

As complexes that satisfy these conditions, three geometric isomers of [Co(dien) $)^{3+}$ and two geometric isomers of $c t s-[C o(e n)(t r i e n)]^{3+}$ were selected (see Fig 13) The complex $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ was also selected because it is the prototype of chiral Co(III) complexes having the largest number of L -shaped channels The results are shown in Table 2 As can be seen, the separation factor shows a stepwise decrease with a decrease in the number of L -shaped channels s - $f a c-\left[\mathrm{Co}(\mathrm{dien})_{2}\right]^{3+}$ is not chiral and is not resolved into enantiomers, but its retention volume is equal to $\operatorname{Vol}(\mathrm{I})$ of u-fac- $\left[\operatorname{Co}(\operatorname{dien})_{2}\right]^{3+}$ and shows the behaviour of the two L -shaped channels Further, it is noteworthy that the $\mathrm{Vol}(\mathrm{II})$ values of complexes B, C and D are nearly equal, which corresponds to zero L-shaped channels Therefore, as far as these data are concerned, the $\mathrm{L}-\mathrm{J}$ model proved to be valid

322 Resolutuon of $\operatorname{cus}(\mathrm{O})-\left[\mathrm{Co}(\mathrm{O})_{2}(\mathrm{~N})_{4}\right]^{+}$complexes

The above argument is vand only for complexes of the type $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ whose ligands are all electrically neutral For such complexes, access of the eluent anion from any direction can occur with equal probability Therefore, any L-shaped channels may be assumed to make an equal contribution to ion association The separation factor as a measure of the efficiency of optical resolution is considered to be proportional to the number of L -shaped channels In contrast, for complexes in which negatively charged donor atoms occupy some of the six coordination sites, access of the eluent anion to the L-shaped channels occurs with different probabilities according to their accessibilities L-shaped channels are ranked according to their accessibilities

Nakazawa et $a i^{48}$ chromatographed four complexes of the type cis$\left[\mathrm{Co}(\mathrm{O})_{2}(\mathrm{~N})_{4}\right]^{+}$with $01 \mathrm{M} \mathrm{K}_{2} \mathrm{Sb}(d$-tart $)$ as the eluent, and explained their separation patterns in terms of ranked L-snaped channels As shown in Fig 14, the cls-$\left[\mathrm{Co}(\mathrm{O})_{2}(\mathrm{~N})_{4}\right]^{+}$-type complex has five kinds of L-shaped channels, which are represented by one edge of an octahearon Here rank 1 is electrostatically the best position
(a)

Fig 14 (a) Stereochemically different edges (solid line) of the $c i s-\left[\mathrm{Co}(\mathrm{O})_{2}(\mathrm{~N})_{4}\right]^{+}$-type complex (b) The L-shaped channel is represented as one edge (solid ine) of an octahedron
to accept the anion, and the ease of access of the anıon toward the complex cation decreases successively from rank 1 to rank 5

The complexes tested were $\operatorname{css}(\mathrm{O}), \operatorname{ccs}(\mathrm{N}), c t s\left(\mathrm{NH}_{3}\right)$ - and $\operatorname{css}(\mathrm{O}), \operatorname{trans}(\mathrm{N})$, $c t s\left(\mathrm{NH}_{3}\right)-\left[\mathrm{Co}(\mathrm{gly})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $C_{1}-c t s-$ and $C_{2}-c i s-\left[\mathrm{Co}(\mathrm{gly})_{2}(\mathrm{en})\right]^{+}$(see Fig 15) Because the Λ form of the iatter two complexes have only L-shaped channels, the Λ form is expected to be eluted first For the $\operatorname{css}(\mathrm{O}), \operatorname{css}(\mathrm{N}), \operatorname{css}\left(\mathrm{NH}_{3}\right)$ complex also, the Λ form is expected to be eluted first because it has two L -shaped channels and one J-shaped channels, both of rank 2 In contrast, for the $\operatorname{cls}(\mathrm{O}), \operatorname{trans}(\mathrm{N}), \operatorname{cts}\left(\mathrm{NH}_{3}\right)$ complex, the Δ form is expected to be eluted first because it has two L-shaped channels of rank 2 Further, the separation factor for the C_{1}-cls complex is better than that for the C_{3}-cls complex, because the former has L-shaped channels of higher rank than the C_{2}-cts complex These expectations were all fulfilled (see Table 3)

$\operatorname{cis}(\mathrm{O}) \operatorname{cis}(\mathrm{N}) \operatorname{cis}\left(\mathrm{NH}_{3}\right)$
$\left.{ }^{\mathrm{r}} \mathrm{Co}(\mathrm{gly})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-}$

$\mathrm{C}_{1}-\mathrm{Cas}(\mathrm{O})-$
$[\text { Colgly) })_{2}(\text { en })^{-}$

$\left.\mathrm{ClS}(\mathrm{O}) \operatorname{trans}(\mathrm{N}) \mathrm{CiSO}_{\left(\mathrm{NH}_{3}\right)}\right)^{-}$
LCotgly/2 $\mathrm{NH}_{3}{ }_{2}$

Fig 15 Schematic structures of some $c i s-\left[\mathrm{Co}(\mathrm{O})_{2}(\mathrm{~N})_{4}\right]^{*}$-type complexes

TABLE 3
NUMBER AND POSITION OF L- AND J-SHAPED CHANNELS OF A-ENANTIOMERS AND RETENTION VOLUMES OF THE COMPLEXES

Complex	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
$\operatorname{css}(\mathrm{O}), \operatorname{css}(\mathrm{N}), \operatorname{css}\left(\mathrm{NH}_{3}\right)-\left[\mathrm{Co}(\mathrm{gly})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	1 LJ	2 L	1 J	1 LJ	1 L
$(1383 \mathrm{ml})$					

323 Resolution of $\operatorname{cis}-\left[\operatorname{Co}(X)_{2}(e n)_{2}\right]^{+}$and $\operatorname{cts}-\alpha-\left[\operatorname{Co}(X)_{2}(\text { trien })\right]^{+}$
Although many examples of complete resolution by ion-exchange chromatography have been reported for tripositive $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$-type complexes, examples of the resolution of $c l s-\left[\mathrm{Co}(\mathrm{X})_{2}(\mathrm{en})_{2}\right]^{+}$are rare Yamazakı and Yoneda ${ }^{49}$ attempted to resolve $c l s-\left[\mathrm{Co}(\mathrm{X})_{2}(\mathrm{en})_{2}\right]^{+}$and $c l s-\alpha-\left[\mathrm{Co}(\mathrm{X})_{2}(\text { trien })\right]^{+}$, where $\mathrm{X}=\mathrm{NO}_{2}^{-}, \mathrm{NCS}^{-}$and N_{3}^{-}, and found a slight resolution for dinitro and disorhodanato complexes and fairly good resolution for diazido complexes Complete resolution was attained for $c l s-\alpha-\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2} \text { (trien) }\right]^{+}$These results could be explaned in terms of the $\mathrm{L}-\mathrm{J}$ model with directional ion association, as shown in Fig 16

The A form of $c s s-\left[\operatorname{Co}(X)_{2}(\mathrm{en})_{2}\right]^{+}$has L -shaped channels that are adjacent to the anionic ligands X Consequently, the $\mathrm{Sb}(d$-tart $)$ anion experiences difficulty in associating with the complex using the L-shaped channels Rather, the anoon associates with the complex from the direction opposite to X^{-}It is not surprising that most $c i s$-dianiono complexes are not resolved by $\mathrm{Sb}(d$-tart $)$ In the diazido complexes, the negative charge of X^{-}is presumed to be diluted in three N atoms owing to resonance, so that there is some possibility for the $\mathrm{Sb}(d$-tart $)$ anion to associate with the cation using the L -shaped channels A farrly good separation of cts$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$is thus understood

In trien complexes, the ion association along the C_{2} direction is prohibited, so that the $\mathrm{Sb}(d$-tart $)$ anion is forced to take other directions in associating with the

Fig 16 Access of $\mathrm{Sb}(d \text {-tart })^{\overline{-}}$ towards $c t s-\left[\mathrm{Co}(\mathrm{X})_{2}(\mathrm{~N})_{4}\right]^{+}$(a) $c u s-\left[\mathrm{Co}(\mathrm{X})_{2}(\mathrm{en})_{2}\right]^{+}$, (b) $c u s-\alpha-$ $\left[\mathrm{Co}(\mathrm{X})_{2}(\operatorname{trien})\right]^{+}\left(\mathrm{X}=\mathrm{NCS}\right.$ and $\left.\mathrm{NO}_{2}\right),(\mathrm{c}) c u s-\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$, (d) $c i s-\alpha-\left[\mathrm{CO}\left(\mathrm{N}_{3}\right)_{2}(\text { trien })\right]^{+}$
complex Consequently, the probability of the $\mathrm{Sb}(d$-tart $)$ anon using the L -shaped channel should increase In fact, the efficiency of optical resolution was improved in all three trien complexes invesugated Even the dinitro and dusorhodanato complexes were partally resolved, and the diazido complex was completely resolved

324 Resolution of $\left[\operatorname{Co}(N)_{6}\right]^{3+}$ by reversed-phase ion-pair chromatography Izumoto and Yoneda ${ }^{50}$ showed that antimony d-tartrate salts $\mathbf{M}_{2} \mathrm{Sb}(d$-tart $)$, where $\mathrm{M}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}^{+}$, can be used successfully as ıon-pairing reagents for opucal resolution by reversed-phase ion-pair chromatography and achieved the complete resoiution of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+},[\mathrm{Co}(\mathrm{sen})]^{3+}$ and $[\mathrm{Co}(\mathrm{sep})]^{3+}$ and the partial resolution of $[\mathrm{Co}(\mathrm{stn})]^{3+}$ and $\left[\mathrm{Co}(\mathrm{Hbg})_{3}\right]^{3+}$, where stn and Hbg represent $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}$ and biguanide $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{5}\right)$, respectively Some of the results are shown in Table 4 Several points can be noted, as follows
(1) The efficiency of resolution is improved compared with that obtained by conventional normail-phase chromatography, $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$ being completely resolved with ease
(2) In all instances except with $\left[\mathrm{Co}(\mathrm{Hbg})_{3}\right]^{3+}$, whose skeleton is quite different from those of the other amine complexes, the A isomer is eluted later, which means that the $\mathrm{Sb}(d$-tart $)$ ion associates favourably with the Λ isomer This coincides with the result obtained by normai-phase ion-exchange chromatography One exception is $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$, which is resolved only slightly with the $\mathrm{Sb}(d$-tart $)$ ion as the cluent in normal-phase chromatography ${ }^{5 i}$ Here the Δ is eluted faster than the A isomer, which means that $\mathrm{Sb}(d$-tart $)$ prefers the Δ to the Λ isomer In the present reversed-phase chromatography, the $\mathrm{Sb}(\dot{d}$-tart $)$ ion prefers the Λ to the Δ isomer This contradiction is explained by assuming that this complex may take different conformations (chair and skew-boat) in different environments
(3) The retention volumes for small-sized complexes, such as $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, $\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}$ or $[\mathrm{Co}(\mathrm{sen})]^{3+}$, are small and are not much affected by variation of the eluent counter ion $\overline{\mathrm{M}}^{+}$In contrast, the retention volumes for large-sized complexes, such as $[\mathrm{Co}(\operatorname{sep})]^{3+},[\mathrm{Co}(\operatorname{stn})]^{3+}$ or $[\mathrm{Co}(\operatorname{ch} x n)]^{3+}(\operatorname{chxn}=$ cyclohexanedıamine $)$, are three to four times greater than those for small-sized complexes, especially when the eluent counter ion M^{+}is $\mathrm{Na}^{+}, \mathrm{K}^{+}$or NH_{4}^{+}and decrease with increasing size of the eluent counter ions, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}^{+}$(see Fig 17)

TABLE 4
RETENTION VOLUME OF THE LATER ELUTED ENANTIOMER AND THE SEPARATION FACTOR (α), OBTAINED WITH $005 \mathrm{M} \mathrm{M}_{2} \mathrm{Sb}(d$-tart) SOLUTION AS THE ELUENT

Complex	$\overline{\mathrm{N}} \mathrm{a}^{*}$		K^{+}		NH_{4}^{+}		$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$		$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}^{+}$	
	\boldsymbol{V}	χ	V	x	V	$\boldsymbol{\alpha}$	V	α	V	α
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{3} \mathrm{Cl}_{3}$	1085	199	1218	200	1118	197	1218	227	1358	265
$\left[\mathrm{Co}(\mathrm{tn})_{3}\right] \mathrm{Cl}_{3}$	1008	125	1085	123	1000	122	775	125	730	124
$\left[\mathrm{Co}(\mathrm{sen}) \mathrm{Cl}_{3}\right.$	1075	197	1198	201	1150	204	1223	233	1498	265
$[\mathrm{Co}(\mathrm{sep})] \mathrm{Cl}_{3}$	2738	118	3385	132	3438	130	2475	134	1950	134
$[\mathrm{Co}(\mathrm{stn})]_{\mathrm{Cl}}^{3}$	3800	100	4000	100	3825	100	2775	100	1755	100

Fig 17 Dependence of the retention volume on the size of the complex ion [Eluted with $\mathbf{M}_{2} \mathbf{S b}(d$-tart $)$, $\mathrm{M}=\mathrm{Na}^{+}$($)$), $\mathrm{Me}_{4} \mathrm{~N}^{+}$(©), and $\mathrm{Et}_{4} \mathrm{~N}^{+}$(O)]

These trends can be interpreted as follows $\mathrm{The} \mathrm{Sb}(d$-tart $)$ ion is adsorbed on the long alkyl chan with its counter ion M^{+}When the small-sized complex ion approaches the adsorbed $\mathrm{Sb}(d$-tart $)$ ion it does not expel M^{+}, because the small-sized complex ion is fairly hydrophilic, so that it stays for a while near the $\mathrm{Sb}(d$-tart $)$ ion, then moves away In contrast, when the large-sized complex ion arrives at the adsorbed $\mathrm{Sb}(d$-tart $)$ 1on, it can displace the counter ion M^{+}and stay near the adsorbed $\mathrm{Sb}(d$-tart $)$ ion for a longer time, so that the retention volume is large However, when the eluent counter ion \mathbf{M}^{+}is a large hydrophobic ion, such as $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$or $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}^{+}$, the complex ion cannot replace the counter ion so that the complex ion cannot stay for long and the retention volume decreases

33 Spectroscopic evidence for directional ion association

The effect of d - and l-tartrate ions and antimony d - and l-tartrate $10 n s^{53}$ on the CD spectra of several $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ complexes of trigonal symmetry was investigated by Sakaguchi et al As the first ligand-field band of the $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ complex consists of only two transitions, A_{2} and E_{a}, which are polarized along the C_{3} and C_{2} axes, respectively, the problem here is to confirm which rotational strength, $R\left(A_{2}\right)$ or $R\left(E_{a}\right)$, changes primarily by the addition of tartrate and antimony tartrate ions, provided that these anıons approach along the C_{3} axis or C_{2} axis The complexes tested were the Δ enantıomers of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ and its analogues, fac- and mer-$\left[\mathrm{Co}(l-\mathrm{pn})_{3}\right]^{3+},[\mathrm{Co}(\mathrm{sen})]^{3+},[\mathrm{Co}(\mathrm{sep})]^{3+}$ and $\left[\mathrm{Co}(\mathrm{ch} x n)_{3}\right]^{3+}(\mathrm{F} 1 \mathrm{~g} 18)$ These complexes contain substituent groups in the direction of the C_{3} and C_{2} axes of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ in such a way that they prevent the access of an anion in that direction The difference CD spectra (DCD spectra), defined as the CD spectra with the anion

$\Delta-f a c-\left[C o(1-p n)_{3}\right]^{3+}$

$\Delta-[C o(\text { sen })]^{3+}$

$\Delta-[\text { Co(sep) }]^{3+}$

Δ-mer-[Co(l-pn) $\left.]_{3}\right]^{3 *}$

$\Delta-(\mathrm{le})_{3}-\left[\mathrm{Co}(-)-\mathrm{Chxn}_{3}\right]^{3+}$

Fig 18 Structures of $\Delta-\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ complexes
minus the CD spectra without the anion, were measured From the DCD data, the association constant K and the CD spectrum of the ion pair were obtained Table 5 shows the values of K_{d}, K_{l} and the degree of chiral discrimination, α, defined as the ration of $K_{l}-K_{d}$ and $K_{l}+K_{d}$

It is worth noting that the value of α is zero for $[\mathrm{Co}(\mathrm{sep})]^{3+}-\operatorname{tart}^{2-}$, in which the access of the tart^{2-} ion is allowed along the C_{2} axis but not along the C_{3} axis This means that the d-tart ${ }^{2-}$ ion cannot discrimınate the chirality of $[\mathrm{Co}(\mathrm{sep})]^{3-}$ along the C_{2} axis Other $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$ complexes can accept the tart ${ }^{2-}$ ion approaching along the C_{3} axis The value of α is not zero Therefore, it can be said that the tart ${ }^{2-}$ ion can discrimınate the chirality of $\left[\mathrm{Co}(\mathbf{N})_{6}\right]^{3+}$ by association along the C_{3} axis

Concerning the CD change, the association of the tart ${ }^{2-}$ ion induces an increase in the E_{a} component for $[\operatorname{Co}(\operatorname{sep})]^{3+}$ and an increase in the A_{2} component for the other complexes (see $\mathrm{F}_{1} \mathrm{~g} 19$) The pattern of the CD change corresponds exactly to the direction of access of the anion

A similar interpretation is applied to the ion association with the $\mathrm{Sb}(t a r t)^{2-}$ ion (see Fig 20) As shown in Table 4, the value of α is not zero in the system $[\mathrm{Co}(\mathrm{sep})]^{3+}-\mathrm{Sb}(\operatorname{tart})^{2-}$, which means that the $\mathrm{Sb}(\operatorname{tart})^{2-}$ ion can discriminate the chirality of $[\mathrm{Co}(\mathrm{sep})]^{3+}$ through association along the C_{2} axis In accordance with this, the CD spectrum of $[\mathrm{Co}(\text { sep })]^{3+}$ changes on addition of the $\mathrm{Sb}(\operatorname{tart})^{2-}$ ion in such a way as the E_{a} component increases For complexes with two triangular facets composed of three NH hydrogens, the A_{2} component is enhanced on ion association, which may be taken to indicate that the $\mathrm{Sb}(\operatorname{tart})^{2-}$ ion exerts axial perturbation in the ion pair It is inferred that such an axial perturbation arises from hydrogen bonding between axial NH hydrogens on both trigonal facets of the complex and the

TABLE 5
ASSOCIATION CONSTANTS WITH d-tart ${ }^{2-}$ AND $\operatorname{Sb}(d \text {-tart })^{2-}$

Complex	d-tart ${ }^{2-}$			$S b(d \text {-tart })^{2-}$		
	K_{1}	$K_{\text {d }}$	$\alpha^{*}(\%)$	K_{1}	K_{d}	$\alpha^{\star}(\%)$
$\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$	134	117	7	473	268	28
$\Delta-[\mathrm{Co}(\mathrm{sen})]^{3+}$	717	496	18	750	ca 5	90
$\Delta-[\mathrm{Co}(\text { sep })]^{3+}$	393	383	0	524	390	15
$\Delta-m e r-\left[\mathrm{Co}(l-\mathrm{pn})_{3}\right]^{3+}$	267	212	15	279	195	18
A-fac- $\left[\mathrm{Co}[l-\mathrm{pn})_{3}\right]^{3+}$	303	225	11	241	168	18
$\Delta-\left[\mathrm{Co}(l-\mathrm{chxn})_{3}\right]^{3+}$	214	154	16	213	140	21

$$
{ }^{\star} \alpha=\left(K_{l}-K_{d}\right)\left(K_{l}+K_{d}\right) \quad 100
$$

oxygen atoms of the $\mathrm{Sb}(\mathrm{tart})^{2-}$ 1on, as shown in F 1 g 21 This model can also explain equally well the results of the chromatographic separations The difference between the L-J model and the present model lies in the orientation of the anion In the LJ model, the anion was assumed to face the complex cation with the tartrate backbone in front This model of access is not favoured electrostatically over that of the present model

Fig 19 (Above) CD spectra of (A) the metal complex and of the ion pairs with (B) l-tartrate and (C) d tartrate (Below) DCD spectra due to l - and d-tartrates

Fig 20 (Above) CD spectra of (A) the metal complex and of the ion pairs with (B) $\mathrm{Sb}(d \text {-tart })^{2-}$ and (C) $\mathrm{Sb}(l-\operatorname{tart})^{2-}$ (Below) DCD spectra to $\mathrm{Sb}(d \text {-tart })^{2-}$ and $\mathrm{Sb}(l-\operatorname{tart})^{2-}$

Fig 21 Proposed model tor the favourable pair $4-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}-\mathrm{Sb}(l-\operatorname{tart})^{2-}$ For clarity, only the relevant hydrogens are shown tor the cation Solid lines are situated in front

4 RESOLUTION OF NEUTRAL COMPLEXES

41 Resolution of fac-[Co($\left.\alpha-A A)_{3-n}(\beta-A l a)_{n}\right]$
In order to estabish the detaled features of the optical resolution of facial tris(aminoacidato)chelates by d-tart ${ }^{2-}$ and by $\mathrm{Sb}(d-\text { tart })^{2-}$ ions, a series of enantiomeric parrs of $f a c-\left[\operatorname{Co}(\mathrm{gly})_{3-n}(\beta \text {-ala })_{n}\right]$ and two series of dastereomeric pars of fac $-\left[\mathrm{Co}(\mathrm{L}-\mathrm{ala})_{3-n}(\beta \text {-ala })_{n}\right]$ and $f a c-\left[\mathrm{Co}(\mathrm{D}-\mathrm{ala})_{3-n}(\beta \text {-ala })_{n}\right]$ were prepared Each parr corresponding to $n=3,2,1$ and 0 was loaded on a column of an anıon-exchange
resin saturated with $\mathrm{Cl}^{-}, \mathrm{SO}_{4}^{2-}, d$-tart ${ }^{2-}$ and $\mathrm{Sb}(d \text {-tart })^{2-}$ and eluted with water ${ }^{54}$ Fig 22 shows schematic representations of the retention volumes obtained When eluted through the Cl^{-}form of the resin, the retention volumes are similar with a varation of n from 3 to 0 In contrast, when eluted through the SO_{4}^{2-} and d-tart ${ }^{2-}$ forms of the resin, the retention volume decreases with the decreasing n The trend of the retention volume on going from $n=3$ to 0 is nearly the same with the SO_{4}^{2-} and d-tart ${ }^{2-}$ forms of the resin, which strongly suggests that the association takes place along the C_{3} axis The NH_{2} group of the chelated β-ala in $f a c-[\mathrm{Co}(\beta$ ala $)_{3}$] has two types of $\mathrm{N}-\mathrm{H}$ bonds, axial and equatorial Three axial $\mathrm{N}-\mathrm{H}$ bonds form hydrogen bonds with three oxygen atoms of SO_{4}^{2-} and d-tart ${ }^{2-}$ ions which are coming along the C_{3} axis, so that a relatively stable association product is formed However, substitution of the five-membered chelate ring (α-ala) for the six-membered chelate ring (β-ala) resuits in a decrease in the number of the axial N-H bonds which provide suitable sites for association along the C_{3} axis Hence the complex decreases its ability to assoclate with SO_{4}^{2-} and d-tart ${ }^{2-}$ with increasing number of α-ala substituents, so that the retention volume and the efficiency of discrimination also decrease As the d-tart ${ }^{\overline{-}}$ ion associates favourably with the Λ isomer, as with $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, the Δ isomer is eluted faster through the d-tart ${ }^{2-}$ form of the resin

A different pattern of optical resolution was obtained on elution through the $\mathrm{Sb}(d \text {-tart })^{2-}$ form of the resin, as shown in Fig 23 In a series of glycine complexes, the retention volume increases with increase in the number of five-membered chelate rings (gly) The separation of two enantiomers also increases with increasing number of five-membered chelate rings In contrast. the retention volume for a series of α-ala complexes decreases with increasing number of five-membered chelate rings According to the $\mathrm{L}-\mathrm{J}$ model, the methyl group in α-ala chelate complexes narrows the L-shaped channel and reduces the opportunity for the anon to associate, and at the same time sharpens the discrimınation between the L and J shapes Hence the separation increases with increasing number of five-membered chelate rings

Similar trends were observed in the retention volumes and their ratios for a series of enantiomeric and diastereomeric pairs of $f a c-\left[\operatorname{Co}(\mathrm{D} / \mathrm{L} \text {-ser })_{3-n}(\beta \text {-ala })_{n}\right]$, where D / L-ser represents D - and L -serine ${ }^{55}$

Fig 22 Retention volumes of $\Delta-\left[\operatorname{Co}(\beta \text {-ala })_{n}(\mathrm{~L}-\text { ala })_{3-n}\right]$ and $\Lambda-\left[\mathrm{Co}(\beta-\text { ala })_{n}(\mathrm{D}-\mathrm{ala})_{3-n}\right](n=0-3) \boldsymbol{a}$ and \square, elution through the Cl^{-}form of the resin. $\boldsymbol{\Delta}$ and \triangle, elution through the SO_{4}^{2-} form of the resin, - and O, elution through the tart ${ }^{2-}$ form of the resin (closed and open symbols correspond to the Δ and A-enantiomers respectively)

Fig 23 Retention volumes of two series of enantiomeric pairs of $f a c-\left[\operatorname{Co}(\beta-\mathrm{ala})_{n}(\mathrm{gly})_{3-n}\right](\rho$ and O$)$ and $f a c-\left[\operatorname{Co}(\beta-a l a)_{n}(\alpha-a l a)_{3-n}\right]$ (\square and $\left.\square\right)$ eluted through a column contaning $\mathrm{Sb}(\text { tart })^{2-} \operatorname{Closed}$ and open symbols correspond to the Δ and A enantiomers, respectively

42 Resolution of mer-[$\left.\operatorname{Co}(A A)_{3}\right]$ complexes

Meridional isomers of $\left[\operatorname{Co}(\beta \text {-ala })_{3}\right]$ were also completely resolved through the $\mathrm{Sb}(d \text {-tart })^{2-}$ form of QAE-Sephadex resin with ethanol-water as the solvent ${ }^{56}$ (see Fig 24) Structural analysis of the crystal obtained from the second-eluted fraction revealed that the absolute configuration is Δ^{57} Therefore, it became clear that the Δ isomer of mer-[Co(β-ala $\left.)_{3}\right]$ associates more favourably than the A isomer with the $\mathrm{Sb}(d \text {-tart })^{2-}$ on The diastereomenc pairs of mer-[Co(L-ala) $\left.)_{3}\right]$ and mer-[Co(D-ala) $\left.)_{3}\right]$ were also completely resolved through the $\mathrm{Sb}(d \text {-tart })^{2-}$ form of the anon-exchange resin with water as the eluent ${ }^{56}$ mer- $\left[\mathrm{Co}(\mathrm{gly})_{3}\right]$ was also resolved into enantiomers, although only partially In all these instances, the Λ were eluted faster than the Δ isomer, which indicates that the $\mathrm{Sb}(d \text {-tart })^{2-}$ ion prefers the A to the Λ isomer Hence the $\mathrm{L}-\mathrm{J}$ model cannot explain the separation order in the meridional chelates

Fig 24 Elution curve of mer-[$\left.\mathrm{Co}(\beta \text {-ala })_{3}\right]$ Eluent, 50% ethanol-water, column, $\mathrm{Sb}(d \text {-tart })^{2-}$ form of QAE-Sephadex A-25 ($54 \times 2 \mathrm{~cm}$ I D)

43 Resolution of $\left[M(a c a c)_{3}\right]$

A variety of chromatographic techniques ${ }^{58-61}$ have been applied for the resolution of tris(acetylacetonato) \mathbf{M} (III) complexes, which are otherwise not easily resolved by conventional diastereomer formation It seems timely to review recent developments in the chromatographic resolution of $\left[\mathrm{M}(\mathrm{acac})_{3}\right]$

Yamagish1 ${ }^{62}$ reported the partial resolution of $\left[\mathrm{M}(\mathrm{acac})_{3}\right](\mathrm{M}=\mathrm{Co}, \mathrm{Cr}$ or Ru$)$ on a column of montmonilionite whose cation-exchange site had been replaced with $\Delta-\left[\mathrm{N}(\text { phen })_{3}\right]^{2+} \mathrm{H}$ is results indicated that $\Delta-\left[\mathrm{M}(\mathrm{acac})_{3}\right]$ is preferentially adsorbed on $\Delta-\left[\mathrm{N}_{1}(\mathrm{phen})_{3}\right]$ in the stationary phase, suggesting the importance of hydrophobic interactions between $\left[\mathrm{M}(\mathrm{acac})_{3}\right]$ and $\left[\mathrm{M}(\text { phen })_{3}\right]^{2+} \mathrm{He}$ applied this unique technique to the resolution of various hydrophobic metal complexes For example, he investigated the optical resolution of a sertes of neutral complexes of the type [Co(acac) ${ }_{n}$ (gly) $\left.)_{-n}\right](n=3,2, l$ and 0$)$ with water as the eluent and achieved partial resolution for $\left[\mathrm{Co}(\mathrm{acac})_{3}\right],\left[\mathrm{Co}(\mathrm{acac})_{2}(\mathrm{gly})\right]$ and $\left[\mathrm{Co}(\mathrm{acac})(\mathrm{gly})_{2}\right]^{63}$

Another notable study was made by Okamoto and Yuki ${ }^{64}$, who showed that optically active poly(triphenylmethyl methacrylate) (PTrMA) coated on silica gel serves as a useful packing material for the chromatographic resolution of [$\mathrm{Co}(\mathrm{acac})_{3}$] and $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$ They were, to our knowledge, the first to achieve the complete resolution of these neutral complexes by chromatography The separation factors were 132 and 137 for $\left[\mathrm{Co}(\mathrm{acac})_{3}\right.$] with methanol and methanol-water (8020), respectively, as the eluent They proposed that chiral discrimination is effected through hydrophobic interactions between acac ingands and the triphenyl group in the chiral polymer

5 RESOLUTION OF ANIONIC COMPLEXES

51 Resolution by alkalotd catıons

511 Resolution of $\left[\mathrm{Co}(\mathrm{O})_{4}(\mathrm{~N})_{2}\right]^{-}$type hydrophtlic complexes

Although many examples of successful resolution by chromatography have been reported for cationic complexes, few examples have been published for anıonic complexes This can probably be attributed to the lack of appropriate chiral selectors Cinchona alkaloids, eg, cinchonine, cinchonidine, quimidine and quinine, are well known to be very effective for shifting the chiral equilibrium of an initially racemic labile complex (see $F_{1 g}$ 25) This suggests that these alkalond cations interact differently with the two enantiomers of the complex and can be used as a chiral selector in chromatographic separations As alkaloids are faırly soluble in water, yet have a hydrophobic character, they can be used as ion-pairing reagents Yamazaki ${ }^{65}$

Fig 25 Structure of the aikaloid cations

Fig 26 Proposed mode of chral discrimination between the quininium cation and Λ-[Co(edta)] (left) and between the quininium cation and $\Delta-\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}$(right)
achieved the complete resolution of $[\mathrm{Co}(\mathrm{edta})]^{-}, c i s-\left[\mathrm{Co}(1 \mathrm{da})_{2}\right]^{-}$, etc , by reversedphase ion-pair chromatography using quinine as an ion-pairing reagent ${ }^{5-8}$ Izumoto et al ${ }^{66}$ appled this technique to the optical resolution of several anionic complexes of the type $c l s-\left[\mathrm{Co}(\mathrm{O})_{4}(\mathrm{~N})_{2}\right]^{-}$, such as $[\mathrm{Co}(\mathrm{edta})]^{-},[\mathrm{Co}(\text { cydta })]^{-},\left[\mathrm{Co}(1 \mathrm{da})_{2}\right]^{-}$, $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}$and $c t s-\alpha-[\mathrm{Co}(\mathrm{ox})(\mathrm{edda})]^{-}$, where cydta and edda are cyclohexanediamınetetraacetate and ethylenediamınediacetate, respectively With quinıne, quin-

TABLE 6
CHROMATOGRAPHIC RESOLUTION OF $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{phen})\right]^{-}$WITH CINCHONA ALKALOID CATIONS AS A CHIRAL ELUENT

Eluent \quad Distance $(\mathrm{cm}) \quad$\begin{tabular}{l}

Enantiomer
eluted fastest

\end{tabular}

$(8 R, 9 S)$-cinchonıne	31	Δ
$(8 S, 9 R)$-cinchonidıne	19	A
$(8 R, 9 \mathrm{~S})$-quinıdıne	4	Δ
$(8 S, 9 R)$-quinıne	40	A
$\mathrm{~N}(1)-\mathrm{Me}-(8 S 9 R)$-quinıne	34	A
$9-\mathrm{AcO}-(8 R, 9 S)$-cınchonıne	34	A
$9-\mathrm{AcO}-(8 S, 9 R)$-cınchonidıne	22	Δ
$9-\mathrm{AcO}-(8 R, 9 S)$-quinidine	$53,91^{\star}$	A
$9-\mathrm{AcO}-(8 S, 9 R)$-quinıne	$49,89^{\star}$	Δ

[^0]idine and cinchonidine, complete resolution was achieved for all these complexes It was found that the efficiency of chiral discrimination by cinchonine is not sufficient for complete resolution The proposed mode of chiral discrimination is shown in Fig 26

512 Resolution of $\left[\mathrm{Co}(\mathrm{O})_{4}(\mathrm{~N})_{2}\right]^{-}$type hydrophobic complex

Miyoshi et al ${ }^{\circ \boldsymbol{}}$ found that the ($8 S, 9 R$)-quinine cation shifts considerably the chiral equilibrium of initially racemic $\left[\mathrm{Cr}(\mathrm{ox})_{2}(\mathrm{phen})\right]^{-}$in water, and attempted to resolve the corresponding inert $\mathrm{Co}(\mathrm{III})$ complex by ion-exchange chromatography using various alkaloid cations as the eluent ${ }^{68}$ The results obtained were examined thoroughly from a stereochemical viewpoint, and the features of chiral discrimination were vividly illustrated

Table 6 gives the distances (cm) from the top of the resin to the band(s) developed when racemic $\mathrm{K}\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{phen})\right]$ was eluted with 200 ml of each eluent (20 $\mathrm{m} M$) When complete resolution is attained, two figures are given for each The absolute configuration of the faster eluted enantiomer is also listed in Table 6 The following characteristics can be extracted from the table (1) the elution order is governed by the configuration around the $\mathrm{C}-8$ and $\mathrm{C}-9$ atoms of each alkalord, (2) alkaloids having a methoxy group at the 6^{*}-position of the quinoline ring, $t e$, quinine and quinidine, have a greater eluting ability than cinchonidine and cinchonine, respectıvely, (3) $\mathrm{N}(1)$-methylation of each alkaloid dımınıshes its elutıng ability, whereas acetylation of the OH group at the $\mathrm{C}-9$ atom enhances it, the elution order being completely inverted, (4) complete resolution is attanable with 9-AcO derivatives, and (5) alkaloids having an ($8 R, 9 S$) configuration have a greater eluting ability than those having an ($8 S, 9 R$) configuration

A detailed study of the kinetic aspects of the Pfeiffer effect of $\left[\mathrm{Cr}(\mathrm{ox})_{2} \text { (phen)] }\right]^{-}$ and PMR spectral changes of each alkaloid on addition of $\left[\mathrm{Co}(\mathrm{ox})_{2} \text { (phen) }\right]^{-}$demonstrated that both of the $\mathrm{N}(1)-\mathrm{H}^{+}$and the $\mathrm{C}(9) \mathrm{OH}$ groups are hydrogen-bonded to the ox part of the complex, and that the quinoline ring bearing an MeO group is stacked with the phen ligand of the complex Coupled with these experimental observations, Miyoshi et al explained the five characteristics in Table 6 on the basis of the two concomitant interaction modes

Figs 27 and 28 depict the two association models they proposed (types 1 and 2, respectively), where hydrophobic stacking interactions between the quinoline ring

Fig 27 Type 1 association models between $\left[\mathrm{Cr}(o x)_{2}\right.$ (phen)] and alkalord ions Left, $(8 S, 9 R)$ -quınınum- A-complex mıddle, $(8 S, 9 R$)-quinınıum- - -complex, rıght, ($8 R, 95$)-quinıdinıum- - -complex

Fig 28 Type 2 association model between $\left[\mathrm{Cr}(\mathrm{Ox})_{2} \text { (phen)] }\right]^{-}$and acetylated alkalord ions Left, ($8 S, 9 R$)-AcO-quininıum A-complex, miade, $(8 S, 9 R$)-AcO-quinmum Δ-complex, nght, ($8 R, 9 S$)-quinidinium- Δ complex
and the phen ligand contribute appreciably in addition to the hydrogen-bonding interactions mentioned above if ($8 S, 9 R$)-quinine is taken as an example, it associates with the Λ complex more firmly (left model) than with the antıpode (middle) in the type 1 mode, as quinine is hydrogen-ionded to both of the two ox ligands for the former complex Similarly, ($8 R, 9 S$)-quinidine associates more favourably with the Δ complex (right) In this way, the elution orders obtained can be interpreted easily, except for 9 -acetoxy derivatıves However, these aikaloids can adopt the type 2 mode simultaneously when the OH group is not involved in the interaction with the complex, but the quinoline ring is stacked with the phen ligand as before In this mode, quinine interacts with the Δ complex (left model in Fig 28) more intimately than with the antipode, as the $\mathrm{N}(1)-\mathrm{H}^{+}$group is hydrogen-bonded to both of the ox ligands for the Δ complex Similariy, $(8 R, 9 S)$-quinidine favours the A complex over its antıpode in the type 2 mode In addition, a close examination of Figs 27 and 28 reveals that the ox part of the complex expenences stenc hindrance from the vinyl group at the $\mathrm{C}-3$ atom for $(8 S, 9 R)$-quinine but not for $(8 R, 9 S)$-quinidine The steric hindrance explains why ($8 R, 9 S$)-alkaloids have a greater eluting ability than their ($8 S, 9 R$)-diastereomers However, as opposite enantiomers are favoured in the two interactions modes by a particular alkaloid, the efficiency of chiral discrimination is naturally low As a resuit, compiete resolution is not achieved with these alkalords

On the other hand, if the alkalord is acetylated, it is forced to adopt the type 2 mode exclusively, as the $\mathbf{O H}$ group is not available for hydrogen bonding Hence complete resolution is attained with $\hat{y}-\mathrm{AcO}$ derivatives

52 Chiral discriminatıon by complex tons

The chromatographic resoiution of anıonic complexes has rarely been attempted because appropriate chıraı cationic eluents are not readıly avaılable However, optically active metal complexes have been successfully utilized as resolving agents for metal complexes of opposite charge For example, $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}$is easily resolved with optically active $c t s-\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{en})_{2}\right]^{+}$via diastereomeric salt formation In addition, Miyoshi and co-workers found that asymmetric complex cations of the type $c i s-\left[\mathrm{M}(\mathrm{X})(\mathrm{Y})(\text { dramine })_{2}\right]^{n+}(\mathrm{X}$ and/or $\mathrm{Y}=$ anionic ligand) displace the chiral equilibrium of initially racemic $\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]^{3-}$ in dioxane-water mixtures ${ }^{69,70}$ These observations suggest that chıral cationic complexes effectively recognize the chirality

TABLE 7
ENANTIOMERS OF ANIONIC COMPLEXES FOKMING FAVOURABLE PAIRS WITH \triangle CATIONIC COMPLEXES

Complex	$\begin{aligned} & \Delta-[C o(\text { sep })]^{3+} \\ & \left(C_{2}\right) \end{aligned}$	$\begin{aligned} & \Delta-\left[\operatorname{Co}(\operatorname{ch} x n)_{3}\right]^{3+} \\ & \left(C_{3}\right) \end{aligned}$	$\begin{aligned} & A-\left[\operatorname{Co}(e n)_{3}\right]^{3+} \\ & \left(C_{2} \text { and } C_{3}\right)^{2} \end{aligned}$
$[\mathrm{Co}(\mathrm{edta})]^{-}\left(\mathrm{C}_{3}\right)$	Λ	Δ	A
$\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}\left(\mathrm{C}_{2}\right)$	A	Δ	Δ
$\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}\left(C_{2}\right.$ and $\left.C_{3}\right)$	A	4	A
$\left[\mathrm{Cr}(\mathrm{mal})_{3}\right]^{3-}\left(C_{2}\right.$ and $\left.C_{3}\right)$	1	Δ	A
fac-[Co(β-ala $\left.)_{3}\right]\left(C_{3}\right)$	A	Δ	A

of anionic complexes in solution, and therefore they are potentially used as chiral selectors in the chromatograpnic resolution of anionic complexes

Tatehata et al ${ }^{71}$ achieved the complete resolution of $\left[\mathrm{CO}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}$ with a DEAE-Sephadex column, using 30% aqueous ethanol containıng $\Lambda-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ as the eluent $\Delta-(+)_{546}-\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}$ was eluted faster They proposed a model of a favourable pair, $\Lambda-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}-\Delta-\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}$, in which the anionic complex is attached to the triangular face of $\Lambda-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ in the direction of the C_{3} axis and makes a face-to-face close contact through hydrogen bonds

Although this model seems to explain the strong association between the two complex ions, it is difficult to explain the mechanism of chiral discrimination and why the Λ cation prefers the Δ anion to the Λ anion in this type of ion pairing Sakaguch et al ${ }^{12}$ expressed doubts about the mechanism proposed by Tatehata et al and attempted to study the mode of interaction between chiral complex ions more generally They eluted several anionic complexes with water on SP-Sephadex saturated with various optically active $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$-type complexes, and also chromatographed these anionic complexes on an anion exchanger (IEX 220) with aqueous solutions of chiral $\left[\mathrm{Co}(\mathrm{N})_{6}\right]^{3+}$-type complexes as the eluent Both sets of results were consistent with respect to favourabie diastereomeric combinations Table 7 shows the chirality of the anionic complexes that form favourable pairs with the cationic complexes (4)

The chirality of these selector cations (4) is specified by looking at the complexes ether along the C_{3} axis as $P\left(C_{3}\right)$ or along the C_{2} axis as $\mathrm{M}\left(C_{2}\right)$ These notations define the chirality by the handedness of the mutual spatial disposition of three or two chelate rings (see Fig 30) Hence the anionic complexes to be resolved will experience $\mathrm{P}\left(C_{3}\right)$ chirality (right-handed propellers) when they approach the Δ cation from the cation's C_{3} axis, whereas they will experience $\mathrm{M}\left(C_{2}\right)$ chirality (left-handed propellers) in the case of the C_{2} access (access along the cation's C_{2} axis from the side opposite to one chelate ring) The chirality of anionic complexes felt by cationic complexes is described similarly Sakaguchı et al assumed that favourable pairs are formed between those complexes which have the same handedness of chelate rings when viewed along the axis that each complex ion directs to the counterpart complex, $i e$, the combinations $\mathrm{M}^{+}\left(C_{2}\right.$ or $\left.C_{3}\right)-\mathrm{M}^{-}\left(C_{2}\right.$ or $\left.C_{3}\right)$ and $\mathrm{P}^{+}\left(C_{2}\right.$ or $\left.C_{3}\right)-\mathrm{P}^{-}\left(C_{2}\right.$ or $\left.C_{3}\right)$ form favourable pairs, where the firss chirality refers to the catıon and the second to the anion

For example, $\Delta-[\operatorname{Co}(\operatorname{sep})]^{3-}$ will direct its C_{2} axis to anionic complexes on

Handedness of Chelate Rings
Δ Complex $\mathrm{M}(\mathrm{ch})_{3}$

Γ
$P\left(C_{3}\right)=\Delta$
$M\left(C_{3}\right)=A$

$M\left(C_{2}\right)=\Delta$
$(M$ nus, left
$P\left(C_{2}\right)=\Lambda$

Fig 29 Handedness of chelate rings of the Δ-complex [$\mathrm{M}(\mathrm{ch})_{3}$]
association, as its C_{3} axis is blocked by bulky covalent caps Then, anionic complexes always feel $\mathrm{M}\left(C_{2}\right)$ chirality and $\Delta-[\mathrm{Co}(\text { sep })]^{3+}$ therefore forms a favourable pair with those anonic complexes which have $\mathrm{M}\left(C_{2}\right)=\Delta$ or $\mathrm{M}\left(C_{3}\right)=\Lambda$ chirality In other words, if anionic complexes "use * the C_{3} axis, their Λ enantiomers are favoured by $\Delta-[C o(s e p)]^{3+}$, whereas the Δ enantiomers are favoured if they use the C_{2} axis Steric and electrostatic requirements lead us to suppose that $[\mathrm{Co}(\mathrm{edta})]^{-},\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}$, $\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]^{3-}$ and $f a c-\left[\mathrm{Co}(\beta \text {-ala })_{3}\right]$ tend to direct their C_{3} (or pseudo- C_{3}) axes towards cationic complexes, so that their $\Lambda\left[l e, \mathrm{M}\left(C_{3}\right)\right]$ enantiomers form favourable pairs with $\Delta-[\mathrm{Co}(\mathrm{sep})]^{3+}$, as is actually found

On the other hand, $\Delta-\left[\operatorname{Co}(\operatorname{chxn})_{3}\right]^{3+}$ is forced to use only its C_{3} axis owing to its bulky chxn rings, the chirality felt by anionic complexes being $\mathrm{P}\left(C_{3}\right)$ Then, the Δ enantiomers $\left[\mathrm{P}\left(C_{3}\right)\right]$ of the above anonic complexes are favoured by Δ $\left[\mathrm{Co}(\mathrm{chxn})_{3}\right]^{3+}\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ has to use its C_{2} axis exclusively to be consistent with the experimental results, although both the C_{3} and C_{2} axes are avalable

The interpretations presented above, however, do not accommodate the results obtained for $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}$which judging from electrostatic considerations should use its C_{2} axis only Miyoshi et al ${ }^{73}$ proposed another mechanism of chiral discrimınation in which hydrogen bonds between the associating complex ions play an essential role According to their mechanısm (see Fig 29), a homochıral combination, $\Delta^{+}-\Lambda^{-}$(or $\Lambda^{+}-\Lambda^{-}$), is a favourable pair when the cationic complex uses the C_{3}^{+}axis, whereas a heterochiral combination $\Delta^{+}-\Lambda^{-}$(or $\Lambda^{+} \Delta^{-}$) is a favourable pair when it uses the C_{2}^{+}axis, irrespective of which axis $\left(C_{3}^{-}\right.$or $\left.C_{2}^{-}\right)$is directed by the anionic complex Hence it follows that $\Delta-[\mathrm{Co} \text { (sep) }]^{3+}$, which uses only the C_{2} axis, forms favourable pairs always with the Λ anonic complexes, whereas the opposite enantiomers (Δ) are favoured by $\Delta-\left[\mathrm{Co}(\mathrm{chxn})_{3}\right]^{3+}$, which uses the C_{3} axis exclusively

It is necessary to discuss $\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ separately, as it can use both the C_{3} and C_{2} axes for hydrogen bonding to anonic complexes For this complex, all the modes concervable are possible $C_{3}^{+}-C_{3}^{-}\left(\Delta^{+}-\Delta^{-}\right), C_{3}^{+} C_{2}^{-}\left(\Delta^{+}-\Delta^{-}\right), C_{2}^{+} C_{3}^{-}\left(\Delta^{+}\right.$ Λ^{-}) and $C_{2}^{+}-C_{2}^{-}\left(\Delta^{+}-\Lambda^{-}\right)$Miyoshi et al considered that the first interaction mode contributes appreciably to the overall interaction, but not effectively to chiral discrimınation, as no definite difference in the interaction is discernible between the

Fig 30 Four types of hydrogen bonding interactions between the complex cation and amon relevant to chiral discrimmation
$\Delta^{+}-\Delta^{-}$and $\Delta^{+}-\Lambda^{-}$combinations (for the $C_{3}^{+}-C_{3}^{-}$mode) However, the $C_{3}^{+}-C_{2}^{-}$and $C_{2}^{+}-C_{3}^{-}$modes serve effectively in chiral discrimınation because three hydrogen bonds are possible for favourable pairs, whereas only two hydrogen bonds are formed for unfavourable pairs The $C_{2}^{+}-C_{2}^{-}$mode is also effective, but contributes to a lesser extent than the $C_{3}^{+}-C_{2}^{-}$and $C_{2}^{+}-C_{3}^{-}$modes because chiral discrimination is effected through the steric repulsion of chelate rings between the complex ions, two hydrogen bonds are possible for both the favourable and unfavourable pars

With the above considerations, the results obtained for $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ can be interpreted as follows When the anionic complexes use the C_{3} axis only, as with [Co(edta) $]^{-}$and $f a c-\left[\mathrm{Co}(\beta \text {-ala })_{3}\right]$, the $C_{2}^{+}-C_{3}^{-}$mode ($\Delta^{+}-\Lambda^{-}$) predominates over the $C_{3}^{+}-C_{3}^{-}$mode $\left(\Delta^{+}-\Delta^{-}\right), \Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ formıng favourable pairs with the Λ enantiomers of these anionic compiexes When the anonic complexes use the C_{2} axis, as with $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}$, the $\mathrm{C}_{3}^{+}-\mathrm{C}_{2}^{-}$mode predominates over the $\mathrm{C}_{2}^{+}-\mathrm{C}_{2}^{-}$mode, $\mathrm{A}-$ $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{en})\right]^{-}$being favoured by $\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

On the other hand, if an anionic complex can use both of the C_{3} and C_{2} axes, $e g,\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}$ and $\left[\mathrm{Cr}(\mathrm{mal})_{3}\right]^{3-}$, the $C_{3}^{+}-C_{2}^{-}\left(\Delta^{+}-\Delta^{-}\right), C_{2}^{+}-C_{3}^{-}\left(\Delta^{+}-\Lambda^{-}\right)$and $C_{2}^{+}-C_{2}^{-}\left(A^{+}-\Lambda^{-}\right)$modes contribute domınantly to chiral discrimınation, as the contribution of the $C_{3}^{+}-C_{3}^{-}\left(\Delta^{+}-\Delta^{-}\right)$mode is negligible It follows that then Δ $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ prefers the Λ enantiomers of $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{gly})\right]^{2-}$ and $\left[\mathrm{Cr}(\mathrm{mal})_{3}\right]^{3-}$, although the efficiency of chiral discrimination is naturally low

As discussed above, $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is not an effective discriminator of the anıonic complexes Insted in Table 7, because it can direct both the C_{3} and C_{2} axes to anonic complexes Further, $\left[\mathrm{Co}(\mathrm{chxn})_{3}\right]^{3+}$ is not expected to discrimınate effectively the chirality of those anionic complexes which can use the C_{3} axis only, as the discrimination is effected here by the $C_{3}^{-}-C_{3}^{-}$mode These discussions lead us to conclude that efficient discrimınation occurs when only the $C_{3}^{+}-C_{2}^{-}$or $C_{2}^{+}-C_{3}^{-}$interaction mode
is possible For example, $[\mathrm{Co}(\mathrm{sep})]^{3+}$ should serve as a good chiral selector for those anionic complexes which can direct the C_{3} axis to the selector cationic complexes, $e g,[\mathrm{Co}(\text { edta })]^{-},\left[\mathrm{Co}(\mathrm{ox})_{2}(\text { gly })\right]^{2-},\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]^{3-}$ and $f a c-\left[\mathrm{Co}(\beta \text {-ala })_{3}\right]$ On the other hand, it is not recommended to use $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ as a chiral selector In fact, complete resolution is attaned for $f a c-\left[\operatorname{Co}(\beta \text {-ala })_{3}\right]$ when it is eluted with water on a very short column packed with $4-[\operatorname{Co}(\operatorname{sep})]^{3+}$-saturated SP-Sephadex C-25 resin, but not with $\Delta-\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ Of course, the Λ enantiomer is eluted faster here, in keeping with the proposed mechanism However, if $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is forced to use the C_{2} axis only (or the C_{3} axis only), its discrimınating ability should be greatly increased, as exemplified by $[C o(s e p)]^{3+}$ It is desirable and probably possible to design the structures of chiral selector complexes so that they wili be effective in the chromatographic resolution of a particular metal compiex if the electrostatic interaction between complex ions, which is not discussed nere, is properly taken into account

REFERENCES

1 H Yoneda, J Liq Chromatogr, 2 (1979) 1157
2 R Tsuchida, M Kobayashı and A Nakamura, J Chem Soc Jap, 56 (1935) 1339, Bull Chem Soc Jap, 11 (1936) 38
3 G Karagouns and G Coumoulos, Nature , London), 142 (1938) 162
4 J R Keubler and J C Ballar, Jr, J Amer Chem Soc, 74 (1953) 3535
5 H Krebs and R Rasche, Z Anorg Allg Chem 276 (1954) 236
6 B E Douglas and S Yamada, Inorg Chem, 4 (1965) 1561
7 J H Dunlop and D Gillard, J Chem Soc (I965) 6531
8 J I Legg, D W Cooke and B E Douglas, Inorg Chem, 6 (1967) 700
9 H Krebs, J Dewald, H Arlitt and J A Wagner, Z Anorg Allg Chem, 287 (1956) 98
10 L T Taylor and D H Busch, J Amer Chem Soc, 89 (1967) 5372
11 J P Collman, R P Blarr, R L Marshall and S Slade, Inorg Chem, 2 (1963) 576
12 T Moeller and E Gulyas, J Inorg Nucl Chem, 5 (1958) 245
13 B Norden and I Jonas, Inorg Nuct Chem Lett 12 (1976) 33
14 T S Piper, J Amer Chem Soc, 83 (1961) 3908
15 Y Yoshino, H Sugyama, S Nogaito and H Kınoshita, Sci Pap Coll Gen Educ Univ Tokyo, 16 (1966) 57

16 F P Dwyer, T E McDermott and A M Sargeson, J Amer Chem Soc, 85 (1963) 2913
17 F P Dwyer A M Sargeson and L B James, J Amer Chem Soc, 86 (1964) 590
18 E L King and R R Walters, J Amer Chem Soc, 74 (1952) 4471
19 N Matsuoka, J Hıdaka and Y Shımura, Bull Chem Soc Jap, 40 (1967) 1868
20 G R Brubakere, J 1 Legg and B E Douglas, J Amer Chem Soc, 88 (1966) 3446
21 J I Legg and B E Douglas, Inorg Cnem 7 (1968) 1452
22 Y Yoshikawa and K Yamasakı, Inorg Nucl Chem Lett, 4 (1968) 697
23 Y Yoshıkawa and K Yamasakı, Inorg Nucl Chem Lett, 6 (1970) 523
24 Y Yoshıkawa and K Yamasakı, Coord Chem Rev, 28 (1979) 205
25 H Yoneda and T Mura, Bull Chem Soc Jap, 43 (1970) 574
26 H Yoneda and T Baba, J Chromatogr, 53 (1970) 610
27 H Yoneda and T Miura, Bull Chem Soc Jap, 45 (1972) 2126
28 Y Kushi, M Kuramoto and H Yoneda, Chem Lett, (1976) 135
29 Y Kushı, M Kuramoto and H Yoneda, Chem Lett, (1976) 339
30 T Tada, Y Kushı and H Yoneda, Chem Lett, (1977) 379
31 K Ogino and U Sato, Bull Chem Soc Jap, 40 (1967) 826
32 B Norden, Acta Chem Scand, 26 (1972) 111
33 H Yoneda, K Myoshı, S Suzukı and T Taura, Bull Chem Soc Jap, 47 (1974) 1661
34 M Fujta and H Yamatera, Bull Chem Soc Jap 49 (1976) 1301
35 H Okazakı, U Sakaguchı and H Yoneda Inorg Chem, 22 (1983) 1539
36 G H Searle, Aust J Chem, 30 (1977) 2625

37 M Kojıma H Takayanagı and J Fuıta Bull Chem Soc Jap, 50 (1977) 1891
38 H Nakazawa S Yamazakı and H Yoneda, 36th Annual Meeting of the Chemtcal Soctety of Japan, Osaka, Aprl 2, 1977, Abstracts I 2D35, D 35
39 H Yoneda and T Yoshızawa Chem Lett (1976) 707
40 T Taura, II Tamada and H Yoneda, Inorg Chem, 17 (1978) 3127
41 M Fuitta, Y Yoshikawa and H Yamatera Chem Lett, (1975) 473
42 M Fujta, Y Yoshıkawa and H Yamatera Chem Commun (1975) 941
43 M Fujita, Y Yoshıkawa and H Yamatera, Chem Lett (1982) 437
44 D H Templeton, A Zalkın and T Uekı Acta Crystallogr, Suppl, 21 (1966) Al54
45 G A Kıosse, N I Golovastıov, A V Ablov and N V Belov, Sov Phys Dokl, 12 (1968) 990
46 T Taura, H Nakazawa and H Yoneda Inorg Nucl Chem Lett, 13 (1977) 603
47 H Nakazawa and H Yoneda J Chramatagr 160 (1978) 89
48 H Nakazawa, U Sakaguchı and H Yoneda J Chromatogr, 213 (1981) 323
49 S Yamazakı and H Yoneda J Chromatogr, 177 (1979) 227
50 S Izumoto and H Yoneda unpublished work
51 H Nakazawa, C E Oh, K Miyoshı and H Yoneda, Bull Chem Soc Jap, 53 (1980) 273
52 U Sakaguchi, A Tsuge and H Yoneda, Inorg Chem 22 (1983) 1630
53 U Sakaguchı, A Tsuge and H Yoneda Inorg Chem, 22 (1983) 3745
54 T Yukımoto and H Yoneda, J Chromatogr 210 (1981) 477
55 S Yamazakı T Yukımoto and H Yoneda J Chromatogr, 175 (1979) 317
56 S Yamazakı and H Yoneda, Inorg Nucl Chem Lett, 15 (1979) 195
57 T Yukımoto, H Okazakı, Y Kushı and H Yoneda, unpublished work
58 B Norden and I Jonas Inorg Nucl Chem Lett, 12 (1976) 33
59 M B Celap, I M Hodzic and T J Janjic J Chromatogr, 198 (1980) 172
60 A F Drake, J M Gould and S F Mason J Chromatogr, 202 (1980) 239
61 M Yamamoto, E Iwamoto, A Kozasa, K Takemoto Y Yamamoto and A Tatehata, Inorg Nucl Chem Lett, 16 (1981) 71
62 A Yamagishi, Inorg Chem, 21 (1982) 3393
63 A Yamagıshı and R Ohnıshı Inorg Chem, 21 (1982) 4233
64 Y Okamoto and H Yuki Chem Lett, (1983) 1221
65 S Yamazakı, J Sct Hiroshima Univ Ser A 46 (1983) 217
66 S Izumoto, U Sakaguch and H Yoneda, Bull Chem Soc Jap, 56 (1983) 1646
67 K Miyosh, Y Matsumoto and H Yoneda, Chem Lett (1981) 1319
68 K Myoshı, N Dohmoto and H Yoneda Inorg Chem, 24 (1985) in press
69 K Myoshı, Y Matsumoto and H Yoneda Inorg Chem, 20 (1981) 1057
70 K Myosh, K Watanabe, Y Toda and H Yoneda Bull Chem Soc Jap, 56 (1983) 3845
71 A Tatehata, M Iyoshı and K Kotsulı J Amer Chem Soc 103 (1981) 7391
72 U Sakaguch1, I Yamamoto, S Izumoto and H Yoneda, Bull Chem Soc Jap, 56 (1983) 153
73 K Miyoshı, Y Sakamoto A Ohkunı and H Yoneda, unpublished work

[^0]: * Complete resolution achieved

